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1. Introduction

The GNN Booklet Part | presents an introductory overview for the topic of Graph Neural Networks
(GNNs).

> We start by delineating graphs and their generalizations, and intuitively touch upon the
topological and geometrical aspects of the graph data.

> We then discuss the various graph types, based on design, (underlying) grid and data
topologies, and present some GNN-useful graph concepts and operations.

> We conclude by exhibiting the different learning tasks related to GNNs, while evincing the
habitual algorithmic procedures for each.

The figurative-narrative is intended for a general audience (from beginners to researchers), as a
collated and lucidly curated account of multiple research papers, tutorials, and courses, directly or

indirectly related to the topic of GNNs. The pertinent works are mentioned in Useful Readings.

What are Graphs?

Graphs are mathematical objects, depicting pairwise relationships through nodes and edges.
Graphs generalize regular grids and sequences, such as images, audio & video.

Agraphisrepresentedas ¢ = (V, E):

-V set of nodes/vertices in the graph

- E set of edges, where each edge connects two nodes in I/

(Fig. 1, pg. 7)
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Fig. 1 - Images as Graphs

An image is a set of pixel values over a regular grid on a Euclidean plane.
A graph (with a chosen adjacent node connectivity) generalizes this, since the pixel values may then lie over an
irregular grid (as shown).

Further, a graph may also represent data over a non-Euclidean structure.

Topology and Geometry in Graphs

> Topology is about the notion of neighborhood.

> Geometry is more about the local shape and structure.

> Since through shapes, geometry can also define neighborhood ideas, topology can be seen as
qualitative geometry.

Graphs provide a natural topology to the data:
- Data over nodes and connected through edges, naturally implies neighborhood ideas.

Graphs, in their very naive form, do not model the geometry the data may be put over:
- Graphs, as such, do not consider coordinate association to nodes.
- The edges are not modeled as line segments.

Since, the data upon the graph, comes from an underlying mathematical space, the data induces its own
geometry. This geometry is partially and implicitly considered during representational learning, since we
want that similar pieces of data are mapped near to each other in the embedding space, although with
GNNs, similarity is decided based on the topology of the data node as well.
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Generalization of Graphs

> Graphs can only model dyadic (pair-wise) relations.
> Complexes and Hypergraphs generalize graphs, as they can model polyadic (involving three

or more quantities) relations as well.

Relation Type llustration Set of Relafions
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Fig. 2 - Dyadic & Polyadic Relations

A graph, when connecting 3 entities, explicitly suggests that each pair is related.

The edges are thus endowed with pairwise data (features), e.g. citation count of paper authored by 2
researchers.

What if three researchers together co-author a paper? We then require a collective feature between the three
nodes. This relation is a polyadic relation, modeled by complexes or hypergraphs.

While defining a polyadic relation, both Complexes and Hypergraphs may implicitly suggest the existence of
underlying dyadic relations also (through combinatorial construction properties). However, pairwise features do
not mandate themselves to be incorporated.
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Complexes & Hypergraphs: The Basic Notions

A Complex

Can be seen as a set containing elements like points, line segments and their higher-dimensional

counterparts, where these elements are glued in a certain way, to model nodes and their relations.

> Examples of higher-dimensional counterparts are triangles/polyhedral cells, tetrahedrons, etc.

> Complexes model polyadic relations through the higher-dimensional structures.

> Different types of complexes are studied based on:
- The family of elements (triangular, polyhedral/cell-like)

- The gluing constraints
A Hypergraph

Can connect any number of vertices through a hyperedge.

- Inagraph (V, EG), anedge e € EG is a 2-vertex subset of /.
- Inahypergraph (V, EH), a hyperedge e € EH is a k-vertex subset of IV, where 1 < k < |V|.

> Hyperedges in a hypergraph enable polyadic relations.

(Fig. 3, pg. 10)
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A complex makes use of higher-dimensional structures, like triangles, tetrahedrons (instead of only line
segments), while a hypergraph groups multiple vertices (instead of only two), to model polyadic relations.

Where a complex would also generally retain the notion of individual line segments as edges, a hypergraph
would usually be free from such downward inclusion ideas, and only the sets of connected vertices form

hyperedges (el, e, €, e4).

The figure shows an undirected simplicial complex, with an isolated node, and the corresponding hypergraph.

10
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(Undirected) Complexes & Hypergraphs

Simplicial Complex

Contains elements (called simplices) such as:
point (0-simplex), line segment (1-simplex), triangle (2-simplex), tetrahedra (3-simplex), etc.

The gluing mechanism requires that any subset of nodes within a simplex also forms a simplex
(property of downward-inclusion).

Downward-inclusion may seem restricting, since if three objects collaborate together, then any two
amongst them should also collaborate.

Closure-Finite & Weak Topology (CW) Complex

Contains elements such as polyhedral cells (squares, hexagons, etc.) and their higher-dimensional

counterparts, instead of triangles and tetrahedra, as in a simplicial complex.

> The gluing mechanism does not require downward-inclusion, but instead requires

hierarchical gluing, i.e. gluing should be done in the order 0-cell, 1-cell, 2-cell, etc.

Cell Complex

When we relax the gluing order in a CW complex, we arrive at a Cell Complex.

Hypergraphs

A hypergraph does not necessarily have downward-inclusion, although such a condition may be

enforced.

> In comparison to cell complexes, hypergraphs are helpful when a lot of overlapping relations

need to be modeled.

1
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(Directed) Complexes & Hypergraphs

The complexes and hypergraphs that generalize undirected graphs can also have a sense of direction.

Directed Complexes
In undirected complexes, putting directions on the edges of a simplex/cell, gives it an orientation.

> These orientations induce directions (of flow/travel) over the entire complex.

Directed Hypergraphs

For each directed edge in a graph, we have a head node (from-node) and a tail node (to-node).
Similarly, in hypergraphs, a hyperedge is directed if the set of its connected vertices is seen as two node
sets, a head node set and a tail node set.

> The directed hypergraphs can be used to model complex chemical reactions, which are
non-reversible (as is often the case), thereby making the concept of direction important.

(Fig. 4, pg. 13)

12
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Fig. 4 - Directed Complexes & Hypergraphs

The figure shows an interesting situation, for authoring a research paper through sequential collaboration, using
a directed simplicial complex, as well as, a directed hypergraph.

A professor (node 1) gives the first paper draft to his PostDoc (node 2), who then collaborates with his PhD
students (nodes 3 and 4) to make further edits.

The paper then passes to another PhD student (node 6) and a Masters student (node 5), who collaborate further,
to put together the final version of the paper.

Due to the directionality over the complex/hypergraph, the paper does not travel back to the main Professor
(node 1), and the other Professor (node 7) never collaborates.

Note that if the direction between nodes 2 & 3 had been reversed, this would mean that the paper never passes
onto the PhD student (node 6) and the Masters student (node 5) for collaboration, once it has been initiated by
Professor (node 1). The PhD students (nodes 4, 5, 6) and the Masters student (node 5) although can collaborate
for writing a research paper, but independent of Professor (node 1) and PostDoc (node 2).

13



Graph Neural Network (GNN)

A GNN is a Neural Network where the inputs are graphs.

Mostly, a GNN learns:

Back to Top

A multidimensional (Rd) embedding/representation for each node of the graph, which is then

used to perform a certain task, e.g. classification.

The representations are generally learnt with the following objectives:
a. Similar nodes in the graph should also be near in the embedding space.

b. The embedding space should have a lower dimension than that of the inputs.

c. The inputs ought to be linearly separable in the embedding space.

(Fig. 5, pg. 15) (Fig. 6, pg. 15)

14
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Where n»d

Representational Learning is the automatic learning of Features/embeddings (with an NN) instead of engineering
them manually. In case of a GNN, the embedding of the node u is learnt by taking into account the local graph
structure around u, i.e. the information contained in the neighboring nodes and edges of u is also encoded in z.

15
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GNNs vs CNNs

GNNs admit relatively wider characteristics of inputs than CNNs.

The common factors of difference are:

Size
- GNNs generally have variable sized input graphs.
- CNNs generally have fixed sized input grids (imageNet classification), although variable input size
CNNs exist.
Topology

- GNNs can process a complex input topology.

- CNNs are designed for a regular input topology.

Reference Point & Ordering

- In GNNs reference points and ordering in the inputs does not exist.
- In CNNs due to a regular grid structure of inputs, an implicit reference point & ordering exists, but
these are never explicitly utilized for representational learning.

Multimodal Features

- In GNNSs, the inputs generally have heterogeneous data (Multimodality)
Examples:
Users and their movie ratings for recommender systems.

Molecules, drug types and genetic information for biomedical applications.

- In CNNs, Multimodal input data exists, but here multimodality generally refers to different modes
of communication between a human and a computer.

Examples: Visuals, text, audio, tactile (touch) (each is one modality).
- The inputs for GNNs have more modalities than those in CNNs.

(Fig. 7, pg. 17)

16
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GNN CNN

Size \orioble  Generaly fixed
oltnougn Variable size CNNs exist

Topology Complex Reqular
Reference Foint  Doesnt Exist  Impliity Exists
Ordering Doesn't Exist Implicitly Exists

Multimodal Features Exist Exist More

Fig. 7 - Inputs in CNNs and GNNs

The table shows key differences in the characteristics of the inputs, admitted by GNNs and CNNs. It is clear that
the GNNs allow a wider variety in their input data.

The multimodality, should, roughly be understood as, being of different types. However, the way the term has
been used with CNNs versus that with GNNs, invites some mention.

Usually, with CNNs and in the field of CV/ML, multimodality has referred to the types that arise from distinct
modes of human-computer interaction, e.g. textual, visual, auditory.

However, in GNNs, multimodality may simply mean different types of data, where these types may even
come from the same mode of human-computer interaction, e.g. in a knowledge graph. This essence of
multimodality can be seen implicitly within the CNNs, e.g. different parts of a face (nose, eyes, mouth, head,
cheeks) can be seen as multi-modal features, as they produce modes in the joint probability distribution of the
facial images.

In principle, this is very justifiable; however, in practice, the term has precluded CNNs for such purposes.

17
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Can GNNs be applied for CNN-style Inputs?

Graphs generalize regular grids, therefore GNNs can definitely be applied for CNN-style inputs.
However, the output from the GNNs may only be more useful, if the application benefits from explicit

encoding of geometrical structure (not just topological) of the underlying grid of the input data.

For example given some part of the grid:
- which type of neighbors are associated with it (topological)

- and in what directions (geometrical).

Note, CNNs encode such geometry only implicitly. This is one of the reasons why transformers (a type of
GNNSs, but not conventional GNNs) have recently started exceeding CNN performance for vision
applications, as they explicity encode the relative positioning of the input patches, for learning

embeddings.

SHP and SUN are neighbors  SHP and BALL are neighbors

Topology
SHP and SEA are neignbors SHP and SEA  are neighbors

CHP s In soutiwest of SUN  SHP is in  norflwest of PALL

Geometr
Y SHP Is In  north of SEA SHP is in north of GEA

Fig. 8 - Topology & Geometry Comparison

Using only topological information (conventional GNNs), the ball in image-B can be predicted as the sun.
Adding explicit geometry (like in transformers) resolves this, while implicit geometry (like in CNNs) may/may not.

18



2. Graph Types and Operations

Node & Edge Features

Back to Top

Nodes and edges can have some features, which come from an underlying mathematical space.

Features can also be seen as attributes or weights across applications.

Graph Types based on Node & Edge Variations

Undirected Graph

A graph is undirected/both-ways relationship If:
elements of E are unordered pairs of the form {u, v}; u,v € V,
there is no direction on the edges.

Directed Graph

A graph is directed If:
elements of E are ordered pairs of the form (u, v); w,v € V,
there is an implication of direction from node u to node v.

Mixed Graph

A graph is mixed If:
Contains both directed and undirected edges.

(Fig.

9, pg. 20)

19



Back to Top

Groph Type Undirected Directed Mixed
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Fig. 9 - Undirected, Directed & Mixed Graphs (Graphs based on Edge Variations)

The edges in a graph can be directed, undirected, or both (mixed). An undirected edge conveys a two-way
relationship, while a directed edge indicates only a one-way connection.

Heterogeneous Graph

In a graph, the nodes and edges can be assigned types.

Agraph ¢ = (V, E, R, T) where:
- R set of all relation/edge types
- T set of all node types

Heterogeneity is synonymous to multimodality in GNNs, e.g. a Knowledge Graph.

Multi-Graph

A graph, where multiple connections (directed/undirected) are allowed between the nodes.
A multi-graph is more meaningful for Heterogeneous graphs, where multiple connections can be of

different types.

(Fig. 10, pg. 21)

20
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Fig. 10 - Heterogenous & Multi-graphs

By default, all nodes (and edges) in a graph are of the same type(s), and only one edge is allowed between any
two nodes of a graph, be it directed or undirected.

A heterogenous graph allows nodes to be of different types, and so, for the edges.

A multi-graph allows for multiple edges between any two nodes in a graph.

The figure shows examples from a conceptual LinkedIn network. Each example has multiple node types
(individual user, company, post, hashtag) and multiple edge types (like, follow, connect, mention, create,
recommend, employee).

Some edge types like connect are undirected, since they indicate a two-way relationship, while those like follow
are directed, since it's not always necessary that two connected entities follow each other.

A user can both create and like a post; thus, two edge types are possible between users and posts. However,
these edges are of a directed variation, since only a user may create/like a post, and not vice-versa.

21
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Special Topologies

Bipartite Graphs

A graph where, the vertices can be divided into two disjoint sets v, and V., such that:
- The edges only connect vertices between v, and v,
- No vertices within v orV are connected.

> Bipartite Graphs are mostly used in the Recommender Systems.

Multipartite Graphs

An extension of bipartite graphs to more disjoint sets {Vr VZ, - Vk}, where the edges never connect

vertices within the same disjoint set.

Multipartite graphs have been recently used to represent genomic data.

Folded (Bipartite/Multipartite) Graphs

Folding is a general concept in graphs, where:
- For non-adjacent nodes u & v with a common neighbor w, folding puts an edge between u & v.

A folded bipartite graph forms two graphs F1 and Fz, corresponding to V1 and V2 respectively, such that

vertices in F1 or F2 may be connected.

(Fig. 11, pg. 23)
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Fig. 11 - Bipartite, Multi-partite & Folded Bipartite Graphs

A bipartite graph has two disjoint sets of nodes, such that no nodes within each set are connected.

A multi-partite graph extends this idea to more than two disjoint sets of nodes.

A folded bipartite graph establishes a sense of (indirect) connections between the nodes of each disjoint set of a
bipartite graph.

Thus, in the figure, the folded bipartite graph for the red nodes, shows that red nodes (a,c) are not (indirectly)
connected through green nodes, while (a,b), (b,d), (c,d) are (indirectly) connected.

A similar folding operation may also be applied to the disjoint sets of a multi-partite graph.

23
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Dense/Sparse Graph

Density/Sparsity of a graph can be measured by a simple and standard graph metric:

Graph Density = Number of edges in the graph/Maximum number of possible edges

Dense Graph

A graph in which the number of edges are close to the maximal number of edges, i.e. majority of the
nodes of the graph are connected.

A dense graph is therefore a graph in which it's not easy to take out some vertices as a lot of edge
connections need to be broken. This idea is synonymous with the idea of dense sets in Mathematics.

> Dense Graphs are used in GNNs to handle noisy data on graph nodes and edges.

Sparse Graph

It's opposite of a dense graph, where the number of edges are very less in comparison to the maximal

possible.
> Most real-world graphs are sparse.
> Learning GNNs on sparse graphs is a challenge.

(Fig. 12, pg. 25)
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Fig. 12 - Density and Dense/Sparse Graphs

Density of a graph is a measure of how connected a given graph is, in comparison to what it possibly be.
A sparse graph is very less connected, while a dense graph is almost maximally connected.
Note that in the case of directed graphs, the maximal number of edges are twice than those in undirected

graphs, in order to account for directedness.

All given expressions are for simple graphs, i.e. multiple edges are not allowed between any two nodes.

25
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Regular, Complete and Random Graphs

These types of graphs are poor for real-world applications, but useful for establishing theoretical bounds
on real-world graphs.

Regular Graphs

Each vertex has the same number of neighbors.

Complete Graphs

Each pair of nodes is connected.

Random Graphs

In random graphs, edges and nodes may be seen:
- to be generated by a random process,
- or coming from a probability distribution.

> Properties of random graphs may change or remain the same under certain graph functions;
these properties are used to study real-world graphs through approximations to random graphs.
> Random graphs are also used in the watermarking of GNNs.

(Fig. 13, pg. 27)
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Random Grogh Example
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@
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Fig. 13 - Random Graphs

The figure shows how the edges of a simple graph may be generated (independently of other edges) through a
random process, where at each processing time-step (iteration), the random variable follows a Bernoulli
Distribution; Here 2 iterations are illustrated. Criteria may also be defined to add/delete nodes of the graph,
through another random process.

The Erdos-Renyi Model is a famous random graph generation model, which is used to provide guarantees on the
existence of properties of interest, for a general family of graphs.
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Special Feature Topologies

Homophily, Heterophily and Disassortativity in Graphs are special topologies, between the features of the
neighboring nodes. These topologies may be seen over various graph topologies (of the previous

section).

Homophily
A node is likely to be connected to nodes of the same type.
Heterophily

A node is likely to be connected to nodes of different types.

Disassortativity

A node is likely to receive unimportant/harmful information from the neighboring nodes.

> Homophilic and Heterophilic Graphs are Assortative Graphs.

> GNNs assume that the graph geometry is homophilic, but many real world graphs are heterophilic
and disassortative.

> Learning GNNs for heterophilic and disassortative graphs can be a challenge.

(Fig. 14, pg. 29)

Noisy Graph

A graph where the data on nodes and edges may be noisy, i.e. incorrect.
Examples: A knowledge graph auto-mined from the web, or, a social network with fraudulent connections.

> Training GNNs with noisy graphs is a challenge, as the representations
(which are usually obtained through recursive aggregation in GNNs) get corrupted.

28
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Fig. 14 - Homophilic, Heterophilic & Disassortative Graphs

A homophilic graph contains similar neighbors (nodes) to a given node, while a heterophilic graph is likely to
contain dissimilar neighbors to a node. In both cases, however, a node receives useful/important information
from its neighbors.

When the neighbors of a node do not provide any useful information, the graph is disassortative. Disassortative
graphs, therefore, often require access to long-range relations for gaining useful information.

The figure shows the homophilic & heterophilic concepts through nodes that may depict towns, villages,
metropolitan cities in a country. The disassortativity is shown through a hypothetical construction, where saying
everything about the weather forecast, does not give any clear idea for weather prediction, and therefore, is not
useful.

Note that homophilic graphs are also called associative graphs, since a node of a given type is likely to be
associated with the nodes of the same type. Under similar parlance, heterophilic graphs are also called
dissociative graphs, since a node of a given type is likely to be not-associated to nodes of the same type.
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Graph Operations

Degree Matrix (D)

A V x IV diagonal matrix, which specifies the number of edges attached to each vertex v € V in the

graph.

> In a directed graph, the edges can attach as incoming or outgoing, so we have an incoming and
an outgoing degree matrix.

> |n case of undirected graphs, a self-loop counts as two edges to the vertex (by convention), since
there are two points of edge attachment to the node.

Adjacency Matrix (A)

AV x V square matrix, that tells which vertices are adjacent to a given vertex.

> In undirected graphs, the matrix is symmetric.
> |In simple directed graphs, the matrix is unsymmetric. (In directed multigraphs, the matrix may or

may not be symmetric).

Laplacian Matrix (L)

Laplacian Matrix (L) = Degree Matrix (D) — Adjacency Matrix (A)

> This can be seen as a slightly modified way of specifying the graph topology.

> Intuitively, it can be thought of as a discretized version of the Laplacian operator v

- Imagine a function/surface being discretized and approximated by a graph, such that the nodes
are dense where the function’s second derivative is greater.

(Fig. 15, pg. 31)
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Laplacion Matrix
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Fig. 15 - Degree, Adjacency and Laplacian Matrices of a Graph

A degree matrix tells the number of neighbors for each node, while an adjacency matrix tells which nodes are the
neighbors. The Laplacian matrix, say, being applied to a function f, tells how much on an average the value of f
at a given node i is greater than the value of f at i’'s neighbors.

The Laplacian Operator can also be given an interpretation as being the divergence of gradient of the
function f (scalar field). This is by the definition of the Laplacian in terms of the gradient operator V. If one
imagines f as a flow function, a near-zero Laplacian (on a region) would then mean that the flow does not form a
sink or source (in that region), or, in other words, the flowing fluid does not contract or expand (in that region).

Spectrum of a Graph

It is the set of eigenvalues of A or L matrices.
Importance of Graph Spectrum:

- The eigenvectors carry notions of smoothness of the function being approximated by the graph.

- Thus, studying the spectrum can tell us about some aspects of GNN performance.
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Connected Graph/Components

A graph is connected if every pair of vertices are connected by a path.

Connected Components (Undirected)

Components of a graph (subgraphs) where each of them is a connected graph.
Across (connected) components no node or edge is shared.
> A graph that is itself connected has only one connected component.

Strongly Connected Components (directed)

It is a subgraph where there is a path between every pair of nodes, taking into account the directionality of

edges. A strongly connected component is defined for a directed graph.

Weakly Connected Components (directed)

It is a subgraph where there is a path between every pair of nodes, by not taking into account the edge
directions. A weakly connected component is also defined for directed graphs.

(Fig. 16, pg. 33)
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Fig. 16 - Strongly and Weakly Connected Components

A connected component in an undirected graph is a subgraph in which there is a path between every pair of
nodes.

To extend the notion to directed graphs, we have strongly and weakly connected components.

Note that the basic idea of a connected component is that we can traverse from any node to any other node in
the component. It’s just that we have more specific terminology for directed graphs.

@)
o | o o 7
‘@ Contract edge {03 @
» ®
(@ ©
- ® ®
®

Fig. 17 - Edge Contraction in a Graph

An edge in a graph can be contracted by merging the two connecting nodes to a single node.
The figure shows that the edge connecting the nodes 0 and a, is contracted, and the new merged node is x.
The neighbors of new node x, are a union of the neighbors of nodes 0 and a.
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Edge Contraction

Remove an edge from a graph, and merge the two connecting nodes of the edge into a new node.
Edge Contraction is used in GNN pooling methods.

(Fig. 17, pg. 33)

Minimum k-Cut

A partition of a graph into k connected components, such that the cut is minimal in some metric.

> A simple min-cut is a min 2-cut.

> |tis used in GNN pooling and also in subgraph mining.

Example of 2-Cut, such fihat min[sum(edge weights of the cuf)l:

Comtry 4 . OCoqury b

Value: lp+[3=29 - Q

lp ™ v
Country 50O \5 O(;ouvﬂ'ry b
Country | oo 49
© b4
O Country 2

Fig. 18 - Minimum k-Cut

The figure shows an example of min 2-cut, the graph is thus partitioned into 2 connected components.

The graph nodes represent countries and edges represent the value of trade occurring between the countries.
We wish to form two country coalitions, such that discontinuation in trade partnerships after the coalition, has
minimal effect on the trade, i.e. the partitioning of the graph is minimal in edge values.
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Graph Coloring

Assigns node-types to a graph, such that no adjacent nodes are of the same type (color).

> An NP-complete problem.
> The problem poses both an empirical/theoretical challenge to be approximated by GNNs.

Given 3 colours, all neighbouring nodes should be of different colour:

\ / ) Grogh Colouring . \ / .'
[> >

Fig. 19 - Graph Coloring

Graph coloring is the process of labeling nodes of the graph into node types (called colors), according to the
constraint that no two neighboring nodes are of similar type (color). It is one of Richard Karp’s 21 NP-complete
problems.
In a more general scenario, one can also label edges with a given set of types (colors), according to a new
constraint.

Graph Coloring algorithms are used in Computer Science to solve problems, where we have a limited amount of
resources, with some restrictions on how they can be used, e.g. network scheduling, register allocation.

Sudoku puzzles can also be seen as a graph coloring problem, since the resources (numbers) are limited, and
they have to be used as per the constraints of the sum along rows, columns, and 3x3 squares.

Training a GNN which can provide good approximation guarantees to graph coloring problems, can be
challenging.
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Graph Isomorphism

Isomorphism

> A structure-preserving one-to-one (bijective) function.
> Meant to exist between mathematical objects of the same type.

Graph Isomorphism

> A function from vertices of graph G, to the vertices of graph G,

o such that the topological structure is preserved.

> G1 and G2 are the mathematical objects of the same type.

> Graph Isomorphism is an important concept for understanding the expressive power of GNNs.

[ a

Mapping Function
F=1  Ha)=z
FD)=8  Flb)=y
o1 Fom O

Fig. 20 - Graph Isomorphism

Two graphs are isomorphic, if they are essentially the same graphs (topologically), but with different node
names.

The figure shows two isomorphic graphs and a mapping function that matches the nodes across these graphs.
Note that the topology (connection pattern) in the two graphs is the same.

Graph Isomorphism has emerged as a very useful concept to study the expressive power of GNNs, i.e. which
properties of graphs GNNs can’t recognize.
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3. Learning Tasks in GNNs

Graph neural networks (GNNs) can be used to learn multiple types of tasks for graph-input data. These
learning tasks can mostly be of three types:

a. Classification
b. Structure Mining

c. Generation

Edge Classification

Combining Forts
(Groph/subgraphn)
Classification

Non-Steiner Way

P

Clossification
Tosks

g o

Pofertial Farts
Classification

Completion

Structure Mining
Tasks

Generation
Tasks

Fig. 21 - Learning Tasks in GNNs
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Classification Tasks

The aim is to assign some part (or whole) of the graph to known classes.

Classification Tasks can be categorized into the following:

e o T

Node Classification

Edge classification

Combining Parts (Graph/Subgraph) Classification
Potential / Missing Parts Classification

Edge Classification

Combining Forts
(Graph/subgraph)
Classification

Fotential Farts
Classification

Fig. 22 - Classification Tasks
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Node Classification

For an input graph G, a GNN is learnt to assign a class (from a pre-chosen set of node classes) to each
given node n.

The assignment is made considering the topology of the node n, i.e. its neighboring nodes.
The neighboring nodes, in turn, come with their own topology.

Thus, a node n, indirectly encompasses the entire graph topology.

Oufput ~ Node type
020 = Hamlet
060 = Vilage
006  City
004 = Metropolitan

Fig. 23 - Classification of a Node

The figure shows that the pre-chosen set of node classes is {hamlet, village, city, metropolitan}, and the node is
assigned the class village based on the highest probability output from the GNN.

Node feature learning (used in node classification) is widely used in most other GNN learning tasks as well.
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Edge Classification

For an input graph G, a GNN can be learnt to assign a class (from a pre-chosen set of edge classes) to
each given edge e.

The assignment is made considering the topologies of the connecting nodes,
which indirectly encompass the entire graph topology.
The edge classification is thus dependent on the node-level representations.

Quipuf  Edge type

(Node. 4 , Nede 5) UR | Roud
C:{NN —— 022 Rail

028 Marine

002  Ar

Fig. 24 - Classification of an Edge

The figure shows that the pre-chosen set of edge classes is {road, rail, marine, air}, and the edge (between
nodes 4 & 5) is assigned the class road based on the highest probability output.
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Back to Top

We may want to assign a class to an entire graph, or a subgraph (which is not a single node/edge).

The procedure:

typically starts with the learning of node-level embeddings, and then combining them

with a function of choice, to build the representation for the graph (subgraph).

These combined embeddings can be converted to class-specific probabilities by a simple neural network.

Output  Gragh type

0/8 Industrial Mapping c2 Combine AL

024 Agricutura Normally : Normaly SUM | & | | :

058  Hagtorical IHayer NN | om m| | Zm
s 3
= =

Node 3

Fig. 25 - Classification of a Graph/Subgraph

.
=

Node 4

For each node

bl

Node b

GNN

Feature
Representations

In the figure, the nodes come from {village, metropolitan, hamlet, city}, and based on the corresponding feature

representations, a selected area may belong to {industrial, agricultural, historical}.

The node representations take into account the connecting edge types that come from {road, rail, marine, air}.
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Potential Parts Classification

For an input graph G, we may want to predict:
if a missing edge should exist or not, and if a given node may have a type T.

The former can be seen as a (binary) edge classification problem, while the latter is essentially a

(binary) node classification problem.

Such binary classification problems have an essence of finding the existence or the nature of potential
parts of the graph, when the parts are topologically known.

Potential Nodes Pofential Edges

| |

KFC KFC

The Node The Node-Fair

GNN GNN

| |

Node Existence — Oufput Edge Existence  Oufput
Open KFC 08 Make Rood = Qb
Dont Open /G (2 Dont Make Rood | (4

Fig. 26 - Classification of Potential Parts

The figure attempts to depict the scenario, where we wish to decide if a given property (node) should be
designated for KFC (node type), and whether a road (edge) may be established between two given eating
outlets.

The (binary) edge classification is often referred to as the link prediction problem, useful in recommender
systems, e.g., an edge may be established between a user and a movie, if the user likes the movie, else not.
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Structure Mining Tasks

The aim is to find the part (or mild augmentation) of the graph that may most appropriately represent a

target concept.
Structure Mining Tasks can be categorized into the following:

a. Clustering
b. Non-Steiner Way
c. Steiner Way

Non-Steiner \Way

Fig. 27 - Structural Mining Tasks

43



Back to Top

Clustering

Given a graph G, we may want to find subgraphs reflecting similar concepts.

We can achieve this by:

- clustering over the node-level feature representations (learnt through GNN),

- using unsupervised algorithms like K-means (or spectral clustering if the features seem to be in a
non-compact geometry).

> The node representations take into account the connecting edge types as well.
> Here the GNN learning objective has no notion of similarity of subgraph-level representations.
However, such a criterion may be incorporated using metric learning over the clusters.

For each node Feafure

GNN

Representations
I{] 20| 3 4| Bl |
12 ||ZZ || 22||42 || 52| bZ
i |2 | 24 5 o
N 2 R N WY
T £ 8 8 8 8
zZ2 22 =22 2
|

024 2,5 b3 Outpt Unsupervised

= Clsfring Algo

Subgraph(s) (weans)

Fig. 28 - Structure Mining by Clustering
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Non-Steiner Way

For an input graph G, we may want to find a subgraph matching a specific objective, which may not
be directly derived from the node and edge attributes.

We can achieve this by:

- collecting the node-level representations (which indirectly consider the network topology with
connection types), and

- designing an appropriate subgraph selection algorithm that would translate any selected
subgraph to the constraint estimate.

> There might be multiple outputs, each satisfying the given criteria.
> Here we do not consider any graph expansion for finding the optimal subgraph, and hence,

subgraph mining is non-Steiner.

(Fig. 29, pg. 46)
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For each node Feature Represenmhons_

GNN
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Node 2
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Node 4
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|
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Fig. 29 - Structure Mining the Non-Steiner Way

The figure shows that we want to find the subgraph connecting towns v1 and v5, such that the ETA (estimated
time of travel) is less than 90 minutes.

Here, an edge e between any two nodes n and m, carries the attribute of amount of traffic/roundabouts/railway
barriers. Thus, it would be advisable to learn this in a data-driven manner, using GNNs.
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Steiner Way
For an input graph G, when we want to find a subgraph matching a specific objective, using
data-driven procedures, we may land into a situation where no subgraph matches the criteria.

- Insuch cases, it may be interesting to somewhat expand the graph (to additional nodes & edges),
- in a manner that including these new nodes and edges, might increase the possibility of finding
the optimal subgraph.

> Since we consider additional graph entities for optimizing our objective, the mining is Steiner and
the additional entities may be called Steiner nodes and Steiner edges.

We emphasize the Steiner structure mining, due to recent success in Al methods for proving
mathematical theorems, where estimating an expansion of the concept is very helpful.

Alternatively, it can be seen as an expansive reasoning mechanism, which tells us that if something is not
happening, what more might make it happen.

The Steiner structure mining has a generative sense, since extra nodes and edges are augmented to the
graph. However, the generation may be seen as somewhat limited.

(Fig. 30, pg. 48)
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Fig. 30 - Structure Mining the Steiner Way

For each node

GNN

Intermediate
Plock

The figure shows that for optimizing through a potential superset of nodes and edges, one would need to iterate

on the typical non-Steiner structure mining procedure.
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Generation Tasks

The aim is to generate new graphs.

A graph may be generated with:
- acompleting/new topology, and new node and/or edge attributes,
- just new node and/or edge attributes, while keeping the same topology.

With a new topological structure, a graph can be generated unconditionally, or conditionally

(from an existing subgraph) to reflect a chosen concept.

Alternatively, a graph may be evolved from an existing graph, keeping the same topology,
but modifying the node and edge attributes, to model some system dynamics.

Hence Generation Tasks can be categorized into the following:

a. Completion

b. Evolution.

Completion

i 8

Fig. 31 - Classification Tasks
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Completion

Given a dataset of graphs, a distribution can be learnt over those graphs, and
- anew graph may be unconditionally generated, by sampling from that distribution, or
- anew graph may also be conditionally generated (from the same distribution), for instance, to

complete a partial graph.

The graph generation may be done
- sequentially (usually achieved through Reinforcement Learning/RNN-based procedures), or

- in one-shot (mostly through encoder-decoder style frameworks).

Note that graph generation (for completion of a graph or a completely new graph) invites a new

topological structure.

(Fig. 32, pg. 51)
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Fig. 32 - Completion as Graph Generation

The figure shows that a GNN can be used to learn embeddings (encodings) of the various (randomly-selected)
subgraphs (of the input graphs), which may be then passed to a Generator (Decoder) module, learning to
reconstruct the graph unconditionally or conditionally.

GNN-based graph generation has analogues to data-driven image and 3D mesh model generation, where
the first aim is to learn a well-structured distribution of the input space, to sample from, later.
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Evolution

A graph may be generated not to add or construct a new topological structure, but only to update its
node and edge attributes, under the same topology, this is called graph evolution.

Graph evolution is generally used to model the temporal dynamics of physical systems, for instance,
particle-particle interactions in physics may be modeled in a graph as node-node interactions with edge
attributes.

> During evolution, if additional nodes and edges are also incorporated, we would say that the
graph is evolved with a flavor of topological generation.

(Fig. 33, pg. 53)
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Fig. 33 - Evolution as Graph Generation

The figure shows that encodings for a number of input subgraphs are learnt through a GNN, which are then
learnt to be decoded through a Generator (Decoder) module, that evolves a given input graph, owing to specific

criteria.
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